CSEC-720 DEEP LEARNING SECURITY (2225 SPRING)

Experimental Assignment 1: Website Fingerprinting
using Deep Learning

Zhi Liu!, Alex Sutay!, and Mehul Sen!

LGolisano College of Computing and Information Sciences, Rochester Institute of Technology

February 2023

1 Introduction

Website fingerprinting is a technique that aims to categorize network traffic data into specific websites
based on their unique features, such as packet timing, size, and number. These features can be
combined to form a website’s unique ”fingerprint.” Attackers can use this technique to infer which
webpages a user is visiting, even if the user is using encryption.

In this assignment, we aim to train and evaluate the effectiveness of three deep learning models,
namely Convolutional Neural Network (CNN), Long Short-term Memory (LSTM), and Stacked De-
noising Auto-Encoding (SDAE), for website fingerprinting attacks. We use hyperparameters that were
previously used in related works, such as AWF[7], DF[9] and DL[1] identify the best model architectures
and the impact it had on the performance.

The CNN best model achieved an improvement of approximately 2.5% in accuracy when tested on
the full dataset. The best LSTM model was not able to get good results. The new SDAE model either
worsened or performed the same as the default model.

2 Experimental Design

Dataset # of Sites | # of Samples per Site | Total Samples
small_10_100 10 100 1000
large_10_1000 10 1000 10000
large_95-100 95 100 9500

full 95 1113 (approx.) 105730

Table 1: Number of Sites and Samples per Site in each dataset

Table 1 presents the results of our model testing on four distinct datasets: the small 10 100, large 10
1000, large 95 100, and full datasets. Fach of these datasets is composed of multiple files, each identified
by the format X-Y. Here, X represents the associated traffic site and Y represents the corresponding
sample number. Each file contains network traffic data, which is parsed into a list of values consisting
of either ‘1’ or *-1’. We use ‘0’ to pad the lists, and the final value of each list indicates the site from
which the data originated.

2.1 CNN

The hyperparameters used in this assignment were determined through a process of analysis, testing,
and selection. This process drew on research conducted directly on the hyperparameters as well as

insights from S. Dubey, S. Singh and B. Chaudhuri[4], D. Marcu and C. Grava[6], S. Vani and T.
Rao[11], S. Bera and V. Shrivastava [2], C. Garbin, X. Zhu, and O. Marques[5] and Srivastava et
al.[10]. Additionally, prior WF research done by Rimmer et al.[7] and Sirinam et al.[9] was also
considered.

Hyperparameters Search Range
Input Units [1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000]
Optimization Function [SGD, Adam, AdaMax, RMSProp]
Activation Function [TanH, ReLU, SeLU, ELU, Sigmoid]
Batch Normalization [No, Yes|
Dropout Layers [None, 0.10, 0.30, 0.50, 0.70, 0.90, 0.93, 0.95, 0.97, 0.99]

Table 2: Table of the search range of Hyperparameters

Table 2 shows a list of the hyperparameters that were tested as part of this assignment as well as
the search range tested. A breakdown of the evaluated hyperparameters and why they were selected
for this assignment is as follows:

e Input Units: These refer to the total number of packet directions that serve as the input for the
model. Changing the input units changes how much of the input, the model is allowed to use for
its training and testing. To identify the ideal number of input units, the search range consists
of values 1000 till 10,000. Rimmer et al. [7] used 3000 input units for their WF classification
model, while Sirinam et al. [9] used 5000 input units for their WF classification model.

o Optimization Functions: They play an important role in the learning process of a CNN model.
They direct the optimization process and determine a model’s performance. Changing optimiza-
tion functions can alter a model’s training process and performance. The range of values consid-
ered for optimization functions includes Stochastic Gradient Descent (SGD), Adam, AdaMax,
and RMSProp. Research by S. Vani and T. Rao [11] showed that AdaMax gave the best per-
formance, while work by S. Bera and V. Shrivastava [2] found that Adam outperformed others.
Additional work by D. Marcu and C. Grava [6] found that SGD had the highest performance.
Rimmer et al. [7] used RMSProp for their WF classification model, while Sirinam et al. [9] used
AdaMax for their WF classification model.

o Activation Functions: They are mathematical functions applied to the output generated by
nodes in a model. They add non-linearity to neural networks. Changing activation functions
can significantly impact a model’s ability to converge and its convergence speed. The range of
values considered for activation functions includes Hyperbolic Tangent (TanH), Rectified Linear
Unit (ReLU), Scaled ELU (SELU), Exponential Linear Unit (ELU), and Sigmoid. According to
research by S. Dubey, S. Singh, and B. Chaudhuri [4], ReLU performs better in image classifica-
tion compared to other activation functions mentioned, while Sigmoid and TanH have the worst
performance. D. Marcu and C. Grava [6] found that ELU performs best for their image classifi-
cation model. Rimmer et al. [7] used ReLU for their WF classification model, while Sirinam et
al. [9] used a combination of ReLU and ELU for their WF classification model.

e Batch Normalization(BN): These are used to standardize the inputs to a network. Adding Batch
normalization can improve the learning speed, provide regularization and reduce overfitting.
Research done by C. Garbin, X.Zhu and O.Marques [5] found that batch normalization improves
accuracy in CNNs with only a small penalty for training time. Rimmer et al. [7] do not use
batch normalization for their WF classification model while Sirinam et al. [9] used several batch
normalizations for their WF classification model.

e Dropout Layers: These are used to address the issue of overfitting by temporarily deactivating
a specified percentage of neurons during each iteration of the training process. Changing the
dropout layer rate can prevent overfitting and increase a model’s performance. The search
range for dropout layer rates included values of None, 0.1, 0.5, 0.7, 0.9 and additional values of
0.93, 0.95, 0.97 and 0.99. Research by Srivastava et al. [10] showed that dropout improves the
performance of neural networks on supervised learning tasks while research by C. Garbin, X.Zhu
and O.Marques [5] found that it reduced their model’s accuracy in tests. Rimmer et al. [7] used

a rate of 0.1 for their WF classification model while Sirinam et al. [9] used a combination of

rates: 0.1, 0.5 and 0.7 for their WF classification model.

Hyperparameters Default Model AWF Model DF Model
Input Units 2000 3000 5000
Optimization Function SGD RMSProp AdaMax
Activation Function TanH ReLU [ELU, ReLU]
Batch Normalization No No Yes
Dropout Layers 0.50 0.10 [0.10, 0.50, 0.70]

Table 3: Table of Hyperparameters used for CNN Models

Table 3 shows a comparison of three models: the Default model, the AWF model, and the DF model.
The Default model is used for testing and training hyperparameters and its complete breakdown is
shown in Figure 5. The AWF model was implemented based on research by Rimmer et al. [7], while the
DF model was implemented based on research by Sirinam et al. [9]. Each hyperparameter was updated
on the default model to create new models and identify the best hyperparameter values. To ensure
consistency and accuracy in our results, each model was executed three times on the ‘full’ dataset. The
performance of each model was evaluated based on its accuracy percentage and loss, then compared
with other hyperparameter values. Based on this analysis, we selected the best hyperparameters to
construct the ‘Best’ model. For a detailed overview of all hyperparameters used in these models, please
refer to Table 11 in the appendix section.

2.2 LSTM

The LSTM models were trained on the large 95100 dataset. However, in order for the LSTM to be
successful, the data was reshaped to be shorter. To do so without any loss, incoming and outgoing
bursts were consolidated into single values. For example, the data was normally structure as incoming
packets being one and outgoing being negative one, a stream may be [1, 1, -1, -1, -1, 1]. This can be
consolidated to [2, -3, 1] with no data loss. After consolidating in this way, the data was reshaped to
all be the same length by padding the beginning of shorter sequences with zeros. This changed the
length of the data from 2,000 to 815.

The hyperparameters tested for the LSTM were the optimizer, learning rate, dropout, and shape.
The shape will be expressed as a list of units in each layer, so for example [128, 64] would represent 2
layers with the first having 128 units and the second having 64 units.

Hyperparameters Search Range Best
Optimizer [SGD, Adam, RMSprop] RMSprop
Learning Rate [0.01, 0.001, 0.0001] 0.01
Dropout Rates [0, 0.1, 0.2, 0.3] 0.1
Number of LSTM layers 1, 2] 2
Number of units [64, 128] [64, 128]

Table 4: Table of Hyperparameters used for LSTM Models

The optimizer and learning rates were tested first as they would control how the rest of training
would perform. Next was the dropout and finally the shape. All of the choices for which hyper-
paramters to tune and which values to test are based on prior work done by Rimmer et. al [7]. The
hyperparameters tested and the best results are shown in Table 4.

The choices for hyperparameters to tune for the LSTM are as follows:

e Optimizer: As discussed in the CNN section, the optimization function determines how the model
will actually improve. Changing it determines how the training process works, which impacts
performance as well as how quickly and effectively it converges on a solution. For the LSTM, we
tested SGD, Adam, and RMSprop.

e Learning Rates: The learning rate controls how fast the optimization functions work. It’s im-
portant to strike a balance in the learning rate because if it’s too small, the optimizer will never
reach the optimal solution, but if it’s too large the optimizer will overstep the optimal solution
and it may never converge. Yu et al. [13] trained a network to use an adaptive learning rate and
found that for most of the training the optimal value was less than 0.1, so we tested 0.01, 0.001,
and 0.0001.

e Dropout Rates: Dropout is used to control overfitting. It can be built into LSTM layers and
works the same way as discussed earlier for CNNs. We chose to test values of 0.1, 0.2, and 0.3
in addition to 0, which is the equivalent of not using dropout.

o LSTM shape: This refers to the number of LSTM layers and how many units are in each layer.
This is the core of the LSTM functions and essentially determines the complexity of the model.
Chakraborty et al. [3] tested different numbers of units in LSTMs with 2 LSTM layers. They
found that their best results were with 64-192 units. In order to keep our LSTMs simpler for
a faster training time, we tried some models with only 1 LSTM layer. We tried LSTMs with
shapes [64], [128], [64, 64], and [128, 64].

2.3 SDAE

We also evaluated the performance of the SDAE under different hyperparameter settings. We are
using the large dataset for the SDAE experiment. The dataset contains 10000 samples, which we split
into 8000 training samples, 1000 validation samples, and 1,000 test samples. Each sample is classified
into one of 10 different classes, with a typical number of 1000 samples per class in the dataset.
Initially, we established a baseline model. After setting up the baseline model, we set one hyperpa-
rameter as the independent variable while keeping the other hyperparameters as same as the baseline
model to investigate the change in both model accuracy and model loss for the validation set. The
hyperparameter configuration of the baseline model and search range are shown in Table 5.

Hyperparameters Baseline Search Range
Layer Configuration [2000,1000,500] [1000,500,250], [2000,1000], [2000,1000,500,250]
Activation Function ReLU [Sigmoid, ELU, Softmax]
Optimization Function Adamax [SGD, RMSProp, Adgrad]
Noise Level 0.3 [0, 0.2, 0.6]

Table 5: Table of Hyperparameters used for SDAE Models

e Layer configuration: The original SDAE paper [12] shows how accuracy shifts with different
combinations of hidden layer numbers and hidden unit numbers. In general, the classification
error decreases as the number of hidden layers and hidden units increases. However, this is not
always the case, as evidenced by the fact that 500 hidden units with 2 hidden layers slightly
outperform 500 hidden units with 3 hidden layers. We aim to investigate how different SDAE
structure combinations can affect the accuracy of our model. The SDAE layer configurations
tested were: [1000,500,250], [2000,1000], [2000,1000,500,250] and the baseline is [2000,1000,500].

e Activation function: As we discussed in the CNN section, we would like to investigate how the
performance of our SDAE model changes with different activation functions. We are particularly
interested in exploring how a completely different activation function, such as Softmax, might
impact our results. Our baseline function is ReLU, but we will also test ELU and Sigmoid.

e Optimization function: The baseline optimization function is Adamax, and we will test two
additional optimization functions: SGD and RMSProp. In addition to these two optimization
functions mentioned in the CNN section, we would also like to test Adagrad, which is an improved
version of SGD with an adaptive learning rate. [8] Interestingly, the original SDAE paper used
SGD as its optimizer [12].

e Noise level: As demonstrated in [12], introducing a certain level of noise can help the model
capture more significant features and improve the results. However, adding either too little or

too much noise can reduce the accuracy of the model. Also, the noise plays an important role
in reducing overlearning and overfitting[1]. As our model’s baseline noise level is 0.3, we aim to
explore the effects of decreasing or increasing the noise levels and observe if it can enhance the
performance of our SDAE model. We will test noise levels of 0, 0.2, and 0.6 in addition to the
baseline value.

Notice when we change the Activation function and Optimization function, we are changing if for both
the pre-training layers and fine-tuning layers. For optimization function, we also keep the learning rate
same for better comparison.

model loss model loss
35
10 q == train m— frain
validation 10 validation
08
25
0.6 1 20
n n
3 8
- =15
041
10
02
05
) ‘——_-—_i—_-—_—___
0.0 1 0.0
0 5 10 15 20 5 30 0 5 10 15 20 5 30
epoch epoch

Figure 1: Baseline Model Loss Before/After Batch Normalization

Apart from adjusting the hyperparameters, we also add batch normalization to the pretraining
layers. This is due to the fact that the model in the original code will have an overfitting issue as the
number of epochs increases. The effect of batch normalization is shown in figure 1.

3 Results

3.1 CNN

Accuracy (%)

1000 65.42

2000 75.62

3000 77.21

4000 77.75

. 5000 77.73

Input Units 6000 7717

7000 77.26

8000 79.20

9000 78.87

10000 77.40

SGD 76.28

. . Adam 68.39

Optimization Function AdaMax 73.31

RMSProp 59.22

TanH 76.37

ReLU 76.70

Activation Function SeLU 74.13

ELU 76.00

Sigmoid 69.07

.. No 75.90

Batch Normalization Yes 7742

None 72.79

0.10 74.69

0.30 75.36

0.50 76.44

0.70 77.02

Dropout Layers 0.90 78.76

0.93 77.84

0.95 75.20

0.97 67.55

0.99 37.78

Table 6: CNN Hyperparameter Results

Table 6 shows the performance of various models using a CNN to conduct a web fingerprinting attack
on undefended traffic. The following is a breakdown of the results for each of the hyperparameters.

Input Units: Table 6 shows that the model with 8000 input units outperformed all other input
units. Input units ranging from 3000 to 9000 have roughly the same accuracy, with 8000 slightly
outperforming its counterparts. This indicates a trade-off between having a relatively smaller part of
the input that could be more important or consistent between samples and having the entire input
which could include several half-empty and padded samples. This suggests that after a certain point,
increasing the number of input units no longer improves the model’s accuracy.

Optimization Function: Table 6 demonstrates that SGD outperforms the other optimization func-
tions, with AdaMax coming in a close second. On the other hand, the results indicate that both Adam
and RMSProp perform significantly worse in these experiments. This suggests that SGD is reliable and
efficient allowing the model to converge on a better solution faster than when using other optimization
functions. Overall, these results support the claim made by D. Marcu and C. Grava [6], that the SGD
function is a superior optimization method.

Activation Functions: Table 6 demonstrates that the ReLLU activation function outperforms other
activation functions in these experiments. On the other hand, the Sigmoid activation function performs
the worst. This suggests that ReLU may be a better choice for this particular application due to its

ability to improve the model’s convergence. Overall, these results support part of the claim made by
S. Dubey, S. Singh, and B. Chaudhury [4], that the ReLU function is a superior activation function
and Sigmoid is the worst.

Batch Normalization: The results show that models with Batch Normalization (BN) perform better
than those without BN. This suggests that BN helps provide regularization and avoid overfitting, thus
improving the model’s accuracy. These results support the claim made by C. Garbin, X. Zhu, and O.
Marques [5] that adding BN improves a model’s effectiveness.

Dropout Layers: Table 6 shows that the model with a dropout layer rate of 0.9 outperformed
all other dropout layer rates. Dropout layer rates ranging from 0.1 to 0.7 have roughly the same
accuracy, with lower dropout ranges achieving their peak accuracy faster compared to models with
higher dropout layer rates. However, higher dropout layer rates are less accurate than some lower
ones. This indicates that it takes longer for models with higher dropout layer rates to reach their
highest accuracy and increasing the dropout layer rate is only effective up to a certain point before
the accuracy starts decreasing.

Based on the findings presented in Table 6, the hyperparameters that yield the best results are Input
Units set to 8000, the use of SGD as the optimization function, ReLU as the optimization function,
inclusion of Batch Normalization and a dropout layer rate of 0.9. We used these hyperparameters
to create the ”Best” model which is then compared with the three models in Table 3. A complete
breakdown of the 'Best” model can be found in Figure 6

Accuracy (%)
Default Model 73.68
Best Model 83.02
AWTF Model 80.70
DF Model 93.12

Table 7: CNN Model Comparison Results

Table 7 shows the accuracy and loss of the four CNN models: the 'Default’ hyperparameters model,
the ’Best’ hyperparameters model, the AWF model, and the DF model. Notably, the DF model
outperforms the other models significantly in terms of both accuracy percentage and loss, followed
by the 'Best’ model, while the 'Default’ model performs the poorest. In addition, the 'Best’” model
demonstrates approximately 10% higher accuracy than the ’Default’ model in the full dataset and
exhibits a reduction in loss by 0.3.

Accuracy
o o
s

1/

—— Default Best —— AWF —— DF

=)
n

15 20 5

Epochs

Figure 2: Accuracy over Epochs for CNN Models

Figure 2 illustrates the classification accuracy of website fingerprinting undefended traffic using a

CNN in a closed world experiment, where the tested models’ accuracy is observed over multiple epochs.
The graph shows that, for all models, the accuracy improvements are less noticeable after 25 epochs.
The figure indicates that the AWF model reaches its peak accuracy the fastest, followed by the 'Best’
model and the 'DF’ model takes the longest. However the DF model catches up and surpasses the
other models in about 15 epochs. We can also see that there is a significant improvement in the 'Best’
model as compared to the 'Default’ model with it consistently providing a higher accuracy quicker.

Note: The 'Best’ model was constructed by varying only a few of the hyperparameters of the
"Default’ model. We believe that this model could be further improved by modifying some of the other
hyperparameters such as the number of hidden layers, the density of hidden layers, the number of
filters and filter sizes and the number of convolutional layers.

3.2 LSTM

The first crucial hyperparameters to train for the LSTM are the optimizer and the learning rate because
they will determine how the rest of experiments will be trained. Because each optimizer is different, it
seemed appropriate to try each learning rate on each optimizer. For the purposes of testing we chose
to start with one LSTM layer with 64 units and no dropout. During testing, we measured training loss
to determine which optimizer was the best at training without considering overfitting for now. This
gave us the results in Figure 3. As you can see SGD struggled to converge. Both Adam and RMSprop
achieved good results, but RMSprop was smoother, and therefore a better choice. Looking at the
learning rates, 0.01 performed the best without becoming unstable. Therefore we will use RMSprop
with a learning rate of 0.01 for the remaining experiments.

Loss of various optimizers and learning rates

Adam I=0.0001
Adam Ir=0.001
Adam Ir=0.01
— 5GD Ir=0.0001
~— 5GD Ir=0.001

SGD Ir=0.01
= RM5prop Ir=0.0001
RMSprop Ir=0.001
RMSprop Ir=0.01

45

Loss

Epoch
Figure 3: The Performance of LSTM With Various Optimizers and Learning Rates

The next step was to pick an optimal dropout that prevented overfitting without sacrificing perfor-
mance. We continued to use the model with one LSTM layer with 64 units. To evaluate performance
and overfitting, we measured training accuracy (labeled as accuracy) and test accuracy for each dropout
level, producing the results in Figure 4. With no dropout, significant overfitting is present, as evident
by the gap between the training and test accuracies. On the other hand, a dropout rate 0.3 resulted in
a relatively poorer result and erratic overfitting. Therefore we conclude that a dropout rate of 0.3 was
too large and prevented the model from learning meaningful parameters. Both 0.1 and 0.2 appeared to
have decently low levels of overfitting with 0.1 performing slightly better overall. Therefore we chose
to use a dropout rate of 0.1 for the remaining LSTM experiments.

Accuracy and Test Accuracy Based on Dropout

Ace: dropout=0
Test Acc; dropout=0
Acc; dropout=0.1
Test Acc; dropour=0.1

Acc; dropout=0.2
Test Acc; dropout=0.2

Ace: dropout=0.3
Test Acc; dropout=0.3

Accuracy

Epoch

Figure 4: The Performance of LSTM With Various Dropout Rates

Finally, we tested various shapes of the LSTM layers and recorded their final accuracies. This
yielded the results shown in table 8. Based on these results, we can conclude that using two layers
performed better than one. However, both models that used two layers performed similarly. Therefore
we don’t conclude that one is necessarily better at solving the problem than the other.

LSTM layers shape Accuracy
[64] 79.75%
[64, 64] 89.47%
[128] 82.17%
[128, 64] 87.55%

Table 8: Table of accuracies and losses of LSTM models by shape

This meant that the best LSTM model tested had two LTSM units with 64 units each, a dropout
of 0.1-0.2 on each LSTM layer, and used RMSprop with a learning rate of 0.1 to optimize. However,
the LSTM did not get as good results as the CNN or SDAE, so we wouldn’t recommend using it. All
of the results are shown in Table 9.

Accuracy (%)
SGD/0.01 21.05
SGD/0.001 2.35
SGD/0.0001 1.30
RMSprop/0.01 63.22
Optimizer / learning rate Plihlz/lsspi?g// 096000011 ggég
Adam/0.01 55.79
Adam/0.001 59.81
Adam/0.0001 92.79
0.1 71.76
0.2 70.58
Dropout 0.3 46.93
[64] 79.75
[64, 64] 89.47
Layers Shape [128] 82.17
128, 64] 87.55

Table 9: LSTM Hyperparameter Results

3.3 SDAE

Table 10 presents the performance of using SDAE to conduct WF attack under different hyperparam-
eter configurations. The recorded data in the table are the three-time average validation accuracy and
validation loss.

Layer Structure: The results indicate that adding an extra layer with 250 hidden units yields
slightly better performance than other layer configurations. However, we consider this performance
difference insignificant given the fluctuation in accuracy and loss during the training process. While
reducing the units of each layer by half and adding an additional layer did not significantly affect
performance, the validation loss of the model increased significantly when a layer was removed.

Activation Functions: The ReLU function was found to perform the best with overall higher
accuracy and lower loss compared to other choices. The second best is the Sigmoid function, but its
loss increases faster than the baseline as the number of epochs increases. ELU has an overall higher
loss and lower accuracy compared to the baseline, which we suspect is due to the negative values it
generates. Interestingly, the Softmax function gave significantly worse performance compared to the
other functions.

Optimization Functions: The different optimizers show clear differences in performance. The base-
line Adam optimizer outperformed the others, followed by Adagrad and SGD. Although RMSProp has
comparable accuracy with Adagrad and SGD, it has significantly higher validation loss and fluctuation.

Noise Level: The change in noise level also did not result in a distinct performance change. This
may be due to the addition of batch normalization already reducing the overfitting. However, we
observed that increasing the noise level slightly increases both the loss and accuracy.

As discussed previously, our best SDAE configuration is the baseline model. we were unable to
achieve significant performance improvements by varying these hyperparameters. Since the default
model has already been fine-tuned and the only differences between the default model and our baseline
model are the number of epochs, units per layer, and the presence of batch normalization, we expect
similar results.

10

A Appendix

ChatGPT, developed by OpenAl, was utilized to brainstorm and enhance the quality of the paper.

Acc(%)

[2000,1000,500] 96.1
Layer Structure [2000,1000] 96.2
[1000,500,250] 96.3
[2000,1000,500,250] | 96.2
ReLU 96.1
Activation Functions Sigmoid 95.1
ELU 94.0
Softmax 58.2
Admax 96.1
Optimizer Functions SGD 92.1
RMSProp 92.5
Adgrad 93.6
0.3 96.1
Noise Level 0.0 95.2
0.1 94.5
0.6 96.0

Table 10: SDAE Hyperparameter Results

Prompt Used: ”"Improve the grammar and flow of this paragraph

11

Model Input Units Activation Optimization Dropout BN

1 1000 TanH SGD 0.5 No

2 3000 TanH SGD 0.5 No

3 4000 TanH SGD 0.5 No

4 5000 TanH SGD 0.5 No

5 6000 TanH SGD 0.5 No

6 7000 TanH SGD 0.5 No

7 8000 TanH SGD 0.5 No

8 9000 TanH SGD 0.5 No

9 10000 TanH SGD 0.5 No

10 2000 TanH Adam 0.5 No

11 2000 TanH Adamax 0.5 No

12 2000 TanH RMSProp 0.5 No

13 2000 RELU SGD 0.5 No

14 2000 SELU SGD 0.5 No

15 2000 ELU SGD 0.5 No

16 2000 Sigmoid SGD 0.5 No

17 2000 TanH SGD None No

18 2000 TanH SGD 0.1 No

19 2000 TanH SGD 0.3 No

20 2000 TanH SGD 0.7 No

21 2000 TanH SGD 0.9 No

22 2000 TanH SGD 0.93 No

23 2000 TanH SGD 0.95 No

24 2000 TanH SGD 0.97 No

25 2000 TanH SGD 0.99 No

26 2000 TanH SGD 0.5 Yes
Default Model 2000 TanH SGD 0.5 No
Best Model 8000 ReLU SGD 0.9 Yes
AWF Model 3000 ReLU RMSProp 0.1 No
DF Model 5000 [ELU, ReLU] AdaMax [0.1, 0.5, 0.7] Yes

Table 11: CNN Models Used

12

input: | [(None, 2000, 1)]
InputLayer
output: | [(None, 2000, 1)]
\
input: | (None, 2000, 1)
ConvlD
output: | (None, 2000, 4)
input: | (None, 2000, 4)
ConvlD
output: | (None, 1996, 4)
input: | (None, 1996, 4)
MaxPooling1D
output: | (None, 998, 4)
\
input: None, 998, 4
Flatten P ()
output: | (None, 3992)
input: | (None, 3992)
Dropout
output: | (None, 3992)
input: | (None, 3992)
Dense
output: | (None, 10)

Figure 5: CNN Default Model

13

input: | [(None, 8000, 1)]
InputLayer
output: | [(None, 8000, 1)]
Y
input: | (None, 8000, 1)
ConvlD
output: | (None, 8000, 4)
Y
o input: | (None, 8000, 4)
BatchNormalization
output: | (None, 8000, 4)
Y
input: | (None, 8000, 4)
ConvlD
output: | (None, 7996, 4)
o input: | (None, 7996, 4)
BatchNormalization
output: | (None, 7996, 4)
Y
. input: | (None, 7996, 4)
MaxPooling1D
output: | (None, 3998, 4)
Y
input: | (None, 3998, 4)
Flatten
output: | (None, 15992)
input: None, 15992
Dropout P ()
output: | (None, 15992)
Y
input: | (None, 15992)
Dense

output: (None, 10)

Figure 6: CNN Best Model

References

1]
2]

Kota Abe and Shigeki Goto. “Fingerprinting attack on Tor anonymity using deep learning”. In:
Proceedings of the Asia-Pacific Advanced Network 42 (2016), pp. 15-20.

Somenath Bera and Vimal Kumar Shrivastava. “Analysis of various optimizers on deep convo-
lutional neural network model in the application of hyperspectral remote sensing image classifi-
cation”. In: International Journal of Remote Sensing 41 (2020), pp. 2664—2683.

Shayak Chakraborty et al. “Study of Dependency on number of LSTM units for Character based
Text Generation models”. In: 2020 International Conference on Computer Science, Engineering
and Applications (ICCSEA). 2020, pp. 1-5. DoI: 10.1109/ICCSEA49143.2020.9132839.

14

https://doi.org/10.1109/ICCSEA49143.2020.9132839

Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. “Activation functions in
deep learning: A comprehensive survey and benchmark”. In: Neurocomputing 503 (2021), pp. 92—
108.

Christian Garbin, Xingquan Zhu, and Oge Marques. “Dropout vs. batch normalization: an em-
pirical study of their impact to deep learning”. In: Multimedia Tools and Applications 79 (2020),
pp. 12777-12815.

David C. Marcu and Cristian Grava. “The impact of activation functions on training and per-
formance of a deep neural network”. In: 2021 16th International Conference on Engineering of
Modern Electric Systems (EMES) (2021), pp. 1-4.

Vera Rimmer et al. “Automated Website Fingerprinting through Deep Learning”. In: ArXiv
abs/1708.06376 (2017).

Sebastian Ruder. An overview of gradient descent optimization algorithms. 2017. arXiv: 1609 .
04747 [cs.LG].

Payap Sirinam et al. “Deep Fingerprinting: Undermining Website Fingerprinting Defenses with
Deep Learning”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security (2018).

Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from overfitting”. In:
J. Mach. Learn. Res. 15 (2014), pp. 1929-1958.

S. Vani and Telu Venkata Madhusudhana Rao. “An Experimental Approach towards the Per-
formance Assessment of Various Optimizers on Convolutional Neural Network”. In: 2019 3rd
International Conference on Trends in Electronics and Informatics (ICOEI) (2019), pp. 331-
336.

Pascal Vincent et al. “Stacked Denoising Autoencoders: Learning Useful Representations in a
Deep Network with a Local Denoising Criterion”. In: Journal of Machine Learning Research
11.110 (2010), pp. 3371-3408. URL: http://jmlr.org/papers/vil/vincent10a.html.

Changyong Yu et al. “LLR: Learning learning rates by LSTM for training neural networks”.
In: Neurocomputing 394 (2020), pp. 41-50. 1SSN: 0925-2312. DOI: https://doi.org/10.1016/
j .neucom.2020.01.106. URL: https://www.sciencedirect.com/science/article/pii/
S50925231220301703.

15

https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
http://jmlr.org/papers/v11/vincent10a.html
https://doi.org/https://doi.org/10.1016/j.neucom.2020.01.106
https://doi.org/https://doi.org/10.1016/j.neucom.2020.01.106
https://www.sciencedirect.com/science/article/pii/S0925231220301703
https://www.sciencedirect.com/science/article/pii/S0925231220301703

	Introduction
	Experimental Design
	CNN
	LSTM
	SDAE

	Results
	CNN
	LSTM
	SDAE

	Appendix

